## Series 7

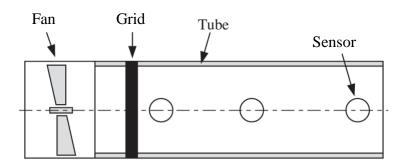
## Exercise 1

The experimental measurements of the step response of a dynamic system are reported in the table below:

| <i>t</i> [s] | 0 | <br>1,8 | 2 | 2,2   | 2,4   | 2,6   | 2,8   | 3,0   | 3,2   | 3,4   |
|--------------|---|---------|---|-------|-------|-------|-------|-------|-------|-------|
| y(t)         | 0 | <br>0   | 0 | 0,349 | 0,455 | 0,486 | 0,496 | 0,499 | 0,500 | 0,500 |

- a) Evaluate graphically the transfer function of this system.
- b) Determine its impulse response in analytical form.

## Exercise 2


Consider the dynamic equation:

$$\ddot{y}(t) + k\dot{y}(t) + 4y(t) = u(t)$$
  $y(0) = \dot{y}(0) = 0$ 

- a) Calculate the transfer function and determine its static gain and equivalent time constant.
- b) Determining the qualitative form of the answer for  $-10 \le k \le 10$  independently of u(t).

## Exercise 3

Consider an aerothermal channel traversed by a constant flow of air produced by a fan. The air is heated at the inlet of the tube by a fine grid whose power released is proportional to the control voltage u. A thermistor measurement provides a voltage  $u_m$  proportional to the temperature of the air at the outlet of the tube.



The installation is described technically as follows:

<u>Tube:</u> Inner diameter: 5 cm, length: 30 cm, position at the entrance of the tube where the air is heated by the grid: about 1 cm.

<u>Grid:</u> Ni–Cr wires, length: 1 m, diameter: 0.2 mm, density: 8 g/cm3, specific heat: 0.12 cal/g°C, heat transfer coefficient at chosen airflow: 400W/m2K.

Air: Flow rate: 2.4 g/s, specific heat: 0.24 cal/g°C, density: 1.2 kg/m³.

<u>Actuator:</u> The electrical power supplied to the gate is proportional to the supply voltage u, with a proportionality factor  $K_p = 7.36 \, W/V$ . This proportionality factor was chosen so as to experimentally obtain a unit static gain between the control voltage and the measurement voltage. Is this the case?

<u>Sensor:</u> The thermistor constitutes one branch of a measuring bridge, the output of which is the measuring voltage  $u_m$ . The sensor can be considered as a first-order dynamic element characterized by the static gain  $K_m = 0.33 \, V/^{\circ}C$  and the time constant  $\tau_m = 0.2 \, s$ .

- a) Model the aerothermal channel by carefully choosing the simplifying assumptions (*a priori* assumptions).
- b) Choose the study point so that the ambient air at 20°C is heated to 40°C.
- c) Determine the transfer function  $U_m(s)/U(s)$  and the associated numerical values. Is it possible to simplify the obtained model (a posteriori assumptions).